Preferential binding of a kinesin-1 motor to GTP-tubulin–rich microtubules underlies polarized vesicle transport
نویسندگان
چکیده
Polarized transport in neurons is fundamental for the formation of neuronal circuitry. A motor domain-containing truncated KIF5 (a kinesin-1) recognizes axonal microtubules, which are enriched in EB1 binding sites, and selectively accumulates at the tips of axons. However, it remains unknown what cue KIF5 recognizes to result in this selective accumulation. We found that axonal microtubules were preferentially stained by the anti-GTP-tubulin antibody hMB11. Super-resolution microscopy combined with EM immunocytochemistry revealed that hMB11 was localized at KIF5 attachment sites. In addition, EB1, which binds preferentially to guanylyl-methylene-diphosphate (GMPCPP) microtubules in vitro, recognized hMB11 binding sites on axonal microtubules. Further, expression of hMB11 antibody in neurons disrupted the selective accumulation of truncated KIF5 in the axon tips. In vitro studies revealed approximately threefold stronger binding of KIF5 motor head to GMPCPP microtubules than to GDP microtubules. Collectively, these data suggest that the abundance of GTP-tubulin in axonal microtubules may underlie selective KIF5 localization and polarized axonal vesicular transport.
منابع مشابه
Native kinesin-1 does not bind preferentially to GTP-tubulin-rich microtubules in vitro.
Molecular motors such as kinesin-1 work in small teams to actively shuttle cargos in cells, for example in polarized transport in axons. Here, we examined the potential regulatory role of the nucleotide state of tubulin on the run length of cargos carried by multiple kinesin motors, using an optical trapping-based in vitro assay. Based on a previous report that kinesin binds preferentially to G...
متن کاملMicrotubule Acetylation Promotes Kinesin-1 Binding and Transport
Long-distance intracellular delivery is driven by kinesin and dynein motor proteins that ferry cargoes along microtubule tracks . Current models postulate that directional trafficking is governed by known biophysical properties of these motors-kinesins generally move to the plus ends of microtubules in the cell periphery, whereas cytoplasmic dynein moves to the minus ends in the cell center. Ho...
متن کاملPosttranslational Modifications of Tubulin and the Polarized Transport of Kinesin-1 in Neurons
Polarized transport by microtubule-based motors is critical for neuronal development and function. Selective translocation of the Kinesin-1 motor domain is the earliest known marker of axonal identity, occurring before morphological differentiation. Thus, Kinesin-1-mediated transport may contribute to axonal specification. We tested whether posttranslational modifications of tubulin influence t...
متن کاملX-ray and Cryo-EM structures reveal mutual conformational changes of Kinesin and GTP-state microtubules upon binding.
The molecular motor kinesin moves along microtubules using energy from ATP hydrolysis in an initial step coupled with ADP release. In neurons, kinesin-1/KIF5C preferentially binds to the GTP-state microtubules over GDP-state microtubules to selectively enter an axon among many processes; however, because the atomic structure of nucleotide-free KIF5C is unavailable, its molecular mechanism remai...
متن کاملThe Aspergillus nidulans kinesin-3 UncA motor moves vesicles along a subpopulation of microtubules.
The extremely polarized growth form of filamentous fungi imposes a huge challenge on the cellular transport machinery, because proteins and lipids required for hyphal extension need to be continuously transported to the growing tip. Recently, it was shown that endocytosis is also important for hyphal growth. Here, we found that the Aspergillus nidulans kinesin-3 motor protein UncA transports ve...
متن کامل